Contribution of proteomic studies towards understanding plant heavy metal stress response

نویسندگان

  • Zahed Hossain
  • Setsuko Komatsu
چکیده

Modulation of plant proteome composition is an inevitable process to cope with the environmental challenges including heavy metal (HM) stress. Soil and water contaminated with hazardous metals not only cause permanent and irreversible health problems, but also result substantial reduction in crop yields. In course of time, plants have evolved complex mechanisms to regulate the uptake, mobilization, and intracellular concentration of metal ions to alleviate the stress damages. Since, the functional translated portion of the genome plays an essential role in plant stress response, proteomic studies provide us a finer picture of protein networks and metabolic pathways primarily involved in cellular detoxification and tolerance mechanism. In the present review, an attempt is made to present the state of the art of recent development in proteomic techniques and significant contributions made so far for better understanding the complex mechanism of plant metal stress acclimation. Role of metal stress-related proteins involved in antioxidant defense system and primary metabolism is critically reviewed to get a bird's-eye view on the different strategies of plants to detoxify HMs. In addition to the advantages and disadvantages of different proteomic methodologies, future applications of proteome study of subcellular organelles are also discussed to get the new insights into the plant cell response to HMs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proteomics of heavy metal toxicity in plants.

Plants endure a variety of abiotic and biotic stresses, all of which cause major limitations to production. Among abiotic stressors, heavy metal contamination represents a global environmental problem endangering humans, animals, and plants. Exposure to heavy metals has been documented to induce changes in the expression of plant proteins. Proteins are macromolecules directly responsible for mo...

متن کامل

Expression of Rice CYP450-Like Gene (Os08g01480) in Arabidopsis Modulates Regulatory Network Leading to Heavy Metal and Other Abiotic Stress Tolerance

Heavy metal (HM) toxicity has become a grave problem in the world since it leads to hazardous effects on living organisms. Transcriptomic/proteomic studies in plants have identified a large number of metal-responsive gene families. Of these, cytochrome-P450 (CYPs) family members are composed of enzymes carrying out detoxification of exogenous molecules. Here, we report a CYP-like protein encode...

متن کامل

Heavy metal toxicity: Effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L.

Plant growth, pigment concentration, biochemical parameters and uptake of heavy metals were determined for Brassica juncea L. in response to cadmium and lead stress. The plant exhibited a decline in growth, chlorophyll content and carotenoids with Cd and Pb but Cd was found to be more detrimental than Pb treatment in B. juncea. The protein content was decreased by Cd (900 μM) to 95% and 44% by ...

متن کامل

Towards Understanding Plant Response to Heavy Metal Stress

Metals like zinc, iron and copper are essential micronutrients required for a wide range of physiological processes in all plant organs for the activities of various metal-dependent enzymes and proteins. However, they can also be toxic at elevated levels. Metals like arsenic, mercury, cadmium and lead are nonessential and potentially highly toxic. Once the cytosolic metal concentration in plant...

متن کامل

Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops—A Proteomic Perspective

Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under alte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012